
Characterization of Teosinte Branched1 Mutants in Setaria viridis

Hannah Oliver^{1,3}, Dr. Doust^{1,2}, Dr. Hu^{1,2}, Dr. Angle³ **Oklahoma State University College of Arts and Sciences**₁; **Department of Plant** Biology, Ecology, and Evolution₂; **College of Education and Human Sciences**₃

Introduction

- Global crop demand has risen due to increased usage in food and biofuel (Edgerton, 2009).
- Alterations in plant architecture due to plant breeding may lead to advancements to improve production yield (Duvick, 2005).
- Increased shoot branching may be the solution to improved harvest yield (Singh, 1977).
- Teosinte branched1 (TB1) is a branching gene identified in grasses such as maize (Lukens and Doebley, 2001). At high levels of expression, TB1 is known for repression in lateral branching (Doebley et al., 1997).
- Common ancestry between maize and Setaria viridis suggest genetic evolution and the opportunity for TB1 genetic comparison (Lukens and Doebley, 2001).
- Hypothesis: We hypothesize that Setaria viridis TB1 mutants will show increased branching, similar to TB1 mutants in maize.

Methods

Discussion

- Between the two TB1 mutant populations, days of heading was the only differing trait.
- Mutant populations differed from wild-type by having fewer tillers at heading.
- We reject our original hypothesis because the opposite pattern was discovered in that wild-type exceeded mutants in branching (tillers).

Characterization studies on plant mutants provide insight on the unpredictability of plant breeding.

Performance Expectation: Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms

Purpose: Students investigate how organism growth is influenced by genetic and environmental factors.

Middle School 5E Lesson Plan "Life's Challenges: Growth of Organisms Under Various Conditions"

NGSS: MS-LS1. From Molecules to Organisms Structure and Processes

Evaluation Student illustrate their

understanding of genetic and environmental factors through summative testing.

Engagement

Students observe germination of lima beans over 2-3 weeks and identify plant structures.

Exploration Students conduct a plant investigation testing various conditions, and collect plant structure data to analyze lima bean plant growth.

Elaboration

Students expand their understanding of genetic and environmental factors through real-life scenarios

Explanation

Students present investigation results and engage in argumentation to defend conclusions.

Results

Hypothesis Test Summary										
Trait	Test	Significance	Decision							
Medians of Day of Heading	Independent – Samples Median Test	0.026	Reject the null hypothesis							
Medians of Culm Height	Independent – Samples Median Test	0.37	Retain the null hypothesis							
Median of Number of Tillers at Flowering	Independent – Samples Median Test	0.261	Retain the null hypothesis							
Medians of Days to Primary Branch	Independent – Samples Median Test	0.676	Retain the null hypothesis							

Table 1: Wilcoxon Rank Test

(significance level of $p \le 0.05$) of difference in medians of selected traits between mutant #4 and mutant #5 population.

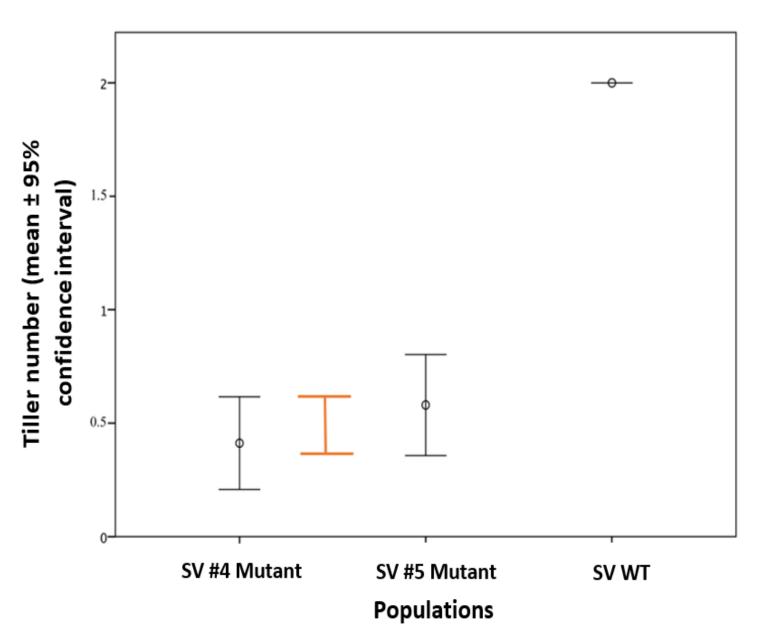


Figure 1: Tillers number at flowering for mutant #4, mutant #5, and wild-type populations. Orange bar indicates overlap in mutant values

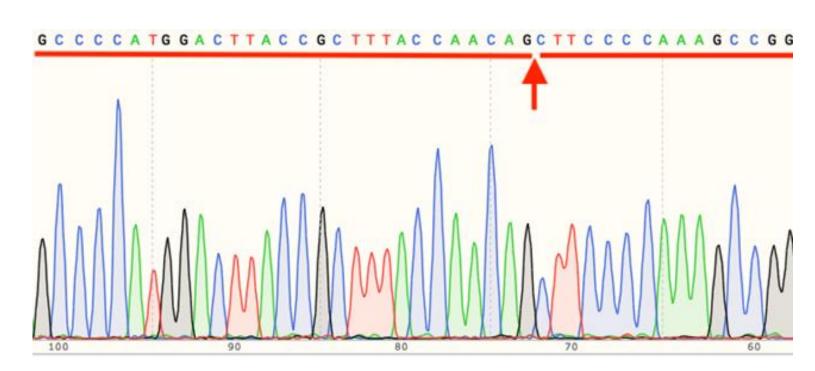


Figure 2: Chromatogram of TB1 mutant. Gap (arrow) indicates start of 16bp deletion mutation.

atg	ttt	cct	ttc	tgc	gat	tcc	tca	agc	ccc	atg	gac	tta	ccg	ctt	tac	caa	cag	ctt	CCC
M	F	Р	F	С	D	S	S	S	Р	M	D	L	Р	L	Y	Q	Q	L	Р
caa	agc	cgg	acc	aat	сса	ccg	gct	tct	tct	act	acc	cgt	gct	CCC	ctc	cct	tcg	ccg	ccg
Q	S	R	T	N	Р	Р	A	S	S	T	T	R	A	P	L	P	S	Р	Р
ccg	acg	сса	gct	tcc	acc	tca	gct	acc	agc	tcg	gta	gcg	ccg	ccg	ccg	сса	ctc	cgc	cac
Р	T	Р	A	S	T	S	A	Τ	S	S	V	A	Ρ	Ρ	Ρ	Р	L	R	H
aag	ccg	tga	tcg	act	cgc	cgg	agc	tgc	cgc	tgc	agc	cgg	tga	tgg	agc	agg	cgc	cgg	cgc
				m	D	D	0	0	D	0	0	D		1.1	0	D	D	R	D

Figure 3: Nucleotide sequence of homozygous TB1 mutants. Arrow in *TB1* sequence indicates start of 16bp deletion. Orange line shows altered amino acid sequence due to deletion. Circled TGA codon represents premature stop codon.