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Abstract 
Researchers often use visual representations (e.g., graphs, diagrams, pictures) to 

communicate scientific data, especially when supporting instruction. This style of visual 
communication relies on the intended receiver’s ability to make sense of the visual inputs in 
manners consistent with scientific thinking. Unfortunately, learners are not always comfortable 
communicating with visualizations, and they do not always interpret and understand the 
represented science as intended. We refer to how well learners make sense of and use visual 
depictions of science as their representational competence. Low levels of representational 
competence can limit learning outcomes. Ignoring students’ self-efficacy and ability to use and 
develop scientific representations can prevent them from developing expertise in their field. I 
developed and tested a 20-item Likert-type instrument to measure participant Efficacy in 
Communicating Scientific with Visualizations (ECSV). I used rigorous approaches to establish 
the content and face validity and reliability (α ≥ 0.94) of the instrument. I used biology student 
mean scores on the ECSV pre/post instruction to document statistically significant differences in 
science communication self-efficiency using visualizations. By identifying the self-efficacy 
involved in communicating science visualizations, we can better inform instructional practices. 
Improvements in representational competence are one step in maximizing our potential to 
improve science literacy. 

 
Introduction 

Science concepts and data are often communicated via visual means, be it graphs, 
symbolic equations, models, diagrams, or simulations, especially when supporting instruction. 
Visualizations can enhance learning from texts, improve problem-solving, and facilitate 
connections between new knowledge and prior knowledge (Cook, 2006). Various forms of visual 
representations can support an understanding of different, yet overlapping, aspects of a 
phenomenon or entity. Given that so many examples in science use visual representations to 
illustrate concepts, it is critical to consider the different ways students use and make sense of 
these representations. This style of visual communication relies on the intended receiver’s ability 
to make sense of the visual inputs in manners consistent with scientific thinking. There is no 
doubt that using visual representations enhances learning (e.g., Reiner & Gilbert, 2008). 
Unfortunately, there is also no doubt that students often have difficulties understanding and 
interacting with visual representations (e.g., Halverson et al., 2011). Learners are not always 
comfortable communicating with visualizations, do not always express high self-efficacy 
regarding their ability to think and learn using visual representations of science (Hung & Wu, 
2018; Uchinokura, 2020), and they do not always interpret and understand the represented 
science as intended.  

Student self-efficacy has been positively linked to academic performance in STEM 
(Ballen, et al., 2018; Lent et al., 1984; Manzano-Sanchez et al., 2018). The manner by which we 
communicate science in the classroom may change student self-efficacy (Hung & Wu, 2018; 
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Uchinokura, 2020). However, we do not yet know how self-efficacy relates to communicating 
science using visual representations.  

How learners make sense of and use visual depictions of science is referred to as their 
representational competence. As people build their representational competence, they can 
transfer ideas across representations, draw meaning from multiple representations, and generalize 
across different representations. Competence can be investigated as an outcome, condition, or 
developmental stage, with students’ understanding of content based on their interactions with 
representations. It has been suggested that students’ representational competence can change 
with task difficulty (Halverson & Friedrichsen, 2013; Kozma & Russel, 2005; Saleh & Daniel, 
2018). When a learner achieves the highest level of representational competence across tasks, it 
is thought that they can begin shifting the external representation into an internal representation, 
or a mental image that can be manipulated (e.g., scanned and rotated) to improve performance on 
visual tasks, memory tasks, and cognitive problem solving (Gilbert, 2005). Whereas, 
underdeveloped representational competence can limit learning outcomes and may prevent 
learners from developing expertise in their field (Chiu, 2015). 

Phylogenetic trees are a common biological visualization that serves as a central 
metaphor for evolution. The branching patterns within these diagrams illustrate testable 
hypotheses about the evolutionary histories of different species lineages. And, these diagrams are 
known to be challenging for students to learn how to interpret and compare (Halverson, 2010; 
Halverson et al., 2011). As such, I have chosen to use trees as the focal model for the treatment 
intervention of this study.  

 
Research Questions 

The purpose of this investigation was to develop and test a new instrument for measuring 
learner efficacy in communicating science with visualizations and explore the relationship 
between efficacy and tree-thinking learning outcomes. This study was guided by the following 
research questions: 

• To what extent can we capture student self-efficacy in communicating science using 
visual representations? 

• How does ECSV change after explicit instruction aimed at building representational 
competence in tree-thinking? 

• To what extent does student confidence and tree-thinking performance impact ECSV 
outcomes? 
 

Methods 
I developed a Likert-type instrument to measure participant self-efficacy in their use of 

scientific visualizations (the current 20-item version of this instrument is included as an 
Appendix). I assessed the validity of this new instrument in two ways: content validity and face 
validity. I initially developed the original 21-item ECSV and asked five experts in the field of 
science communication and the field of learning with representations to review and review the 
instrument items for content validity (Moskal & Leydens, 2000). Through this process, I 
identified one item to eliminate due to a lack of fit within the intended construct being measured. 
Additionally, I administered the updated version of the ECSV to a small group of introductory 
biology students (n = 67) to assess face validity. I used these students to evaluate the overall 
appearance, structure, and wording of the instrument. Students reported that the wording of each 
item was understandable and appropriate for their level of education. Students also reported that 
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the overall appearance of the diagnostic was uncluttered and organized, providing face validity 
(Moskal & Leydens, 2000). I also measured the instrument’s reliability using Cronbach’s alpha 
score for internal consistency. Internal consistency measures compare the responses of each 
participant to all other participants to determine if the diagnostic produces similar answers 
among similar participants (Kline, 2005). The ECSV has a strong overall reliability score of α ≥ 
0.95 with the initial sample data set, which is considered strong and well above the minimum 
reliability score of α ≥ 0.80 (Field, 2009).  

To test the ECSV in a practical setting, I surveyed 883 university and high school 
students studying biology. I ran a principal component analysis (PCA) to identify potential 
components within the ECSV and measured the reliability of each emergent factor with the new 
sample population. Next, I used a quasi-experimental design to explore changes in student ECSV 
component mean scores. I grouped students into treatment groups as follows: a control group 
wherein students were provided no explicit tree-thining instruction and treatment groups wherein 
students engaged in explicit, active-learning tree-thinking instruction (Leone, 2017). Within my 
treatment group, I surveyed Advanced Placement Biology high school students (AP), and 
introductory biology university students (UNI). I asked all participants to complete a pre- and 
post-questionnaire that included items from the Basic Evolutionary Tree-Thinking Skills 
Inventory ([BETTSI] Jenkins et al., 2021), ECSV, a confidence question, and demographic 
questions administered via Qualtrics. The BETTSI is an 11-item multiple-choice instrument 
(Reliability: ρKR20 = 0.80) that captures participant tree-thinking accuracy. I removed student 
responses from the data set who did not complete both surveys, resulting in a reduced sample 
size (Control n = 88; AP n = 72; UNI n = 42). I then calculated participant responses for the full 
instrument mean average on the BETTSI (one score per participant), tree-thinking confidence 
score (one score per participant), and component average mean scores on the ECSV (three scores 
per participant).   

To avoid the potential confounding variable of differences in response scores prior to 
instruction, I calculated the change in ECSV paired scores (post minus pre) for each participant 
by component. I found a significant difference in the Learning & Recall component mean 
change score between the two treatment groups (F = 9.192, p = 0.003, AP = 0.058, UNI = -
0.087). While there were no significant differences in student scores between the AP and UNI 
groups for the other two components (Diagram Use, F = 2.759, p = 0.099, AP = 0.140, UNI = 
0.162; Metacognition, F = 3.781, p = 0.054, AP = -0.097, UNI = -0.032). Thus, I elected not to 
combine the AP and UNI groups and treated them as separate treatment groups for analysis. I 
then ran an ANOVA to compare changes in ECSV mean scores by component between 
participants in the control group to participants in the two treatment groups. Lastly, I ran three 
linear regression analyses to identify significant relationships among post-BETTSI, post-
Confidence, and post-ECSV component mean scores.  

 
Findings 

I conducted a principal component analysis (PCA) on the 20 items with orthogonal 
rotation (varimax). I measured the Kaiser-Meyer-Olkin (KMO) to verify the sampling adequacy 
for the analysis, KMO = 0.954 ('superb' according to Field, 2009), and all KMO values for 
individual items were > 0.85, which is well above the acceptable limit of 0.5 (Field, 2009). 
Bartlett's test of sphericity Χ2 (190) = 10567.21, p < 0.001 indicated that correlations between 
items were significantly large for PCA. I ran an initial analysis to obtain eigenvalues for each 
component in the data. Three components had eigenvalues over Kaiser's criterion of 1 and, in 
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combination, explained 62.19% of the variance. The scree plot groupings further justified 
retaining all three components. Given the large sample size, and the convergence of the scree 
plot and Kaiser's criterion on three components, I retained all three components in the final 
analysis. Table 1 shows the factor loadings after rotation. The items that cluster on the same 
components suggest that Component 1 represents self-efficacy affiliated with Diagram Use (14 
items), Component 2 Learning and Recall (3 items), and Component 3 Metacognition (3 items).  
 
Table 1. 
Summary of exploratory factor analysis results for the ECSV questionnaire (n=883) 
 Rotated Factor Loadings 
Item Diagram Use Learning & Recall Metacognition 
I can use scientific diagrams to explain ideas 0.80   
I can create a scientific diagram to show my 
understanding of a concept 

0.79   

I can explain any scientific diagram I find in a 
textbook to a teacher 

0.79   

I can explain difficult science concepts with 
visual diagrams 

0.77   

I can find appropriate scientific diagrams to 
explain an idea 

0.77   

I can create multiple scientific diagrams to show 
my understanding of a concept 

0.76   

I can compare scientific diagrams and select 
with is best to show an idea 

0.71   

I can explain any scientific diagram I find in a 
textbook to a friend 

0.67   

I can solve problems using scientific diagrams 0.66   
I can interpret what concept a scientific diagram 
is representing 

0.66   

I can explain scientific diagrams I have been 
taught in class to someone else 

0.63   

I can compare scientific diagrams and identify 
what is different about them 

0.62   

I can explain simple science concepts with 
visual diagrams 

0.61   

I can understand when someone explains a 
scientific idea to me using a diagram 

0.54   

I can learn science  0.82  
I can learn biology  0.81  
I can easily remember information presented in 
class 

 0.67  

I can recognize when I do not understand a 
scientific diagram 

  0.84 

I can recognize when I understand a scientific 
diagram 

  0.68 

I can get someone else to explain a scientific 
diagram I do not understand 

  0.58 

Eigenvalues 7.22 2.96 2.26 
% of variance 36.10 14.79 11.30 

α 0.95 0.79 0.65 
Note: Only factor loading over 0.40 appear in table. 
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Furthermore, I found that the Diagram Use self-efficacy subscale of the ECSV had high 
reliability (Cronbach's α = 0.95), and the Learning and Recall subscale had moderate reliability 
(Cronbach's α = 0.79). However, the Metacognition subscale had relatively low reliability, 
Cronbach's α = 0.65 with this new sample population. Overall, the full instrument maintained 
high reliability, Cronbach's α = 0.943. 

When comparing outcomes across quasi-experimental groups post-instruction, I found a 
significant change in student self-efficacy of Diagram Use after instruction compared to the 
control group (DF = 2, F = 4.166, p = 0.017). There were no significant changes in student self-
efficacy of Learning and Recall (F = 0.878, p = 0.417) or Metacognition (F = 1.066, p = 0.346) 
compared to the control group (Figure 1). 
 
Figure 1 
Change in Student ESCV Scores by Component after Treatment (n=202)  

 
 
The linear regression model shows that with every increase of one standard deviation in a 

student’s tree-thinking score via the BETTSI or their confidence in tree-thinking, their efficacy 
also significantly rises. With an increase of one standard deviation in student BETTSI tree-
thinking score, efficacy of Diagram Use will rise 0.044 (p = 0.020), Learning and Recall will 
rise 0.037 (p = 0.034), and Metacognition will rise 0.037 (p = 0.034). Likewise, with an increase 
of one standard deviation in student tree-thinking confidence, efficacy of Diagram Use will rise 
0.252 (p < 0.000), Learning and Recall will rise 0.160 (p < 0.000), and Metacognition will rise 
0.117 (p < 0.000). 
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Discussion 

We can effectively measure aspects of student self-efficacy involved in communicating 
science with visualizations. This current investigation has also provided evidence that explicit 
active tree-thinking instruction can lead to significant increases in student self-efficacy in 
Diagram Use, Learning and Recall, and Metacognition. As students begin to have a higher belief 
in themselves that they are capable of learning through visual communication means, they will 
likely begin to demonstrate increased representational competence, which in turn will support 
gains in self-efficacy (a positive learning cycle). Improvements in representational competence 
are one step in maximizing our potential to improve science literacy. Thus, if educators highlight 
self-efficacy and representational competence within STEM instruction, we can facilitate 
students developing expertise in their field. Ultimately, this type of instructional approach may 
lead to stronger retention in STEM.  

 
Acknowledgments 

 This research was supported by funds from Texas State University. The author would like 
to thank members of the TXSciencePEERS research lab for assistance in the coordination of 
instructional treatments and data collection and Danny Ferguson for his assistance with SPSS. 

 
References 

Ballen, C. J., Wieman, C., Salehi, S., Searle, J. B., & Zamudio, K. R. (2018). Enhancing 
diversity in undergraduate science: Self-efficacy drives performance gains with active 
learning. CBE—Life Sciences Education, 16(4), ar56. 

Chiu, J. L. (2015). Scientific Visualizations. Encyclopedia of Science Education, 951-955. 
Cook, M. P. (2006). Visual representations in science education: The influence of prior 

knowledge and cognitive load theory on instructional design principles. Science 
Education, 90, 1073-1091. 

Field, A. (2009). Discovering statistics using SPSS. Sage publications. 
Gilbert, J.K. (2005). Visualizations in science education (Vol.1). Dordrecht, The Netherlands: 

Springer  
Halverson, K.L. (2010). Using pipe cleaners to bring the tree of life to life. The American 

Biology Teacher, 72(4), 223-224. doi: http://dx.doi.org/10.1525/abt.2010.72.4.4 
Halverson, K. L., & Friedrichsen, P. (2013). Learning tree thinking: Developing a new 

framework of representational competence. In Multiple representations in biological 
education (pp. 185-201). Springer, Dordrecht. 

Halverson, K. L., Pires, C. J., & Abell, S. K. (2011). Exploring the complexity of tree thinking 
expertise in an undergraduate systematics course. Science Education, 95(5), 794–823. 

Hung, C. S., & Wu, H. K. (2018). Tenth graders’ problem-solving performance, self-efficacy, 
and perceptions of physics problems with different representational formats. Physical 
Review Physics Education Research, 14(2), 020114. 

Jenkins, K., Mead, L., Baum, D. Daniel, K. L., Bucklin, C. J., Leone, A., Gibson, J. P., Naegle, 
E. (2021). BETTSI - Basic Evolutionary Tree-Thinking Skills Instrument. QUBES 
Educational Resources. doi:10.25334/ZQY1-W289  

Kline, T.J.B. (2005). Psychological Testing: A Practical Approach to Design and Evaluation. 
Thousand Oaks, CA: Sage Publications. 



Proceedings of the 14th Annual Research Symposium  Daniel, K.L. 
National Association of Biology Teachers 

7 | NABT Research Symposium 2022 
 

Kozma, R. B., & Russell, J. (2005). Modelling students becoming chemists: Developing 
representational competence. In J. K. Gilbert (Ed.), Visualization in science education 
(pp. 121-145). Dordrecht, The Netherlands: Springer. 

Lent, R. W., Brown, S. D., & Larkin, K. C. (1984). Relation of self-efficacy expectations to 
academic achievement and persistence. Journal of Counseling Psychology, 31(3), 356–
362. https://doi.org/10.1037/0022-0167.31.3.35 

Leone, E.A. (2017). An investigation of relationships between student acceptance of evolution, 
tree-thinking, and eye movement among different instructional interventions. Masters 
Thesis. Texas State University, San Marcos, TX. 

Manzano-Sanchez, H., Outley, C., Gonzalez, J. E., & Matarrita-Cascante, D. (2018). The 
influence of self-efficacy beliefs in the academic performance of Latina/o students in the 
United States: A systematic literature review. Hispanic Journal of Behavioral Sciences, 
40(2), 176-209.  

Moskal, B.M. & Leydens, J.A. (2000). Scoring rubric development: Validity and reliability. 
Practical Assessment, Research & Evaluation, 7.  

Reiner, M., & Gilbert, J. K. (2008). When an image turns into knowledge: The role of 
visualization in thought experimentation. In J. K. Gilbert, M. Reiner & M. Nakhleh 
(Eds.), Visualization: Theory and practice in science education. Dordrecht, The 
Netherlands: Springer. 

Saleh, M. R., & Daniel, K. L. (2018). Leveraging on Assessment of Representational 
Competence to Improve Instruction with External Representations. In Towards a 
Framework for Representational Competence in Science Education (pp. 155-176). 
Springer, Cham. 

Uchinokura, S. (2020). Primary and lower secondary students’ perceptions of representational 
practices in science learning: focus on drawing and writing. International Journal of 
Science Education, 42(18), 3003-3025. 

  



Proceedings of the 14th Annual Research Symposium  Daniel, K.L. 
National Association of Biology Teachers 

8 | NABT Research Symposium 2022 
 

Appendix A 
 

Efficacy in Communicating with Science Visualizations (ECSV) 
 

Please rate how certain you are that you can do each of the things using a scale of 1-5:  
 

1    2          3                    4          5 
I Cannot Do At All - - - - - - - Moderately Certain I Can Do - - - - - - - Highly Certain I Can Do 
 

1. I can learn science 
2. I can easily remember information presented in class 
3. I can explain any scientific diagram I find in a textbook to a friend 
4. I can recognize when I do not understand a scientific diagram 
5. I can get someone else to explain a scientific diagram I do not understand 
6. I can compare scientific diagrams and select which is best to show an idea 
7. I can explain difficult science concepts with visual diagrams 
8. I can explain scientific diagrams I have been taught in class to someone else 
9. I can learn biology 
10. I can recognize when I understand a scientific diagram 
11. I can find appropriate scientific diagrams to explain an idea 
12. I can use scientific diagrams to explain ideas 
13. I can create a scientific diagram to show my understanding of a concept 
14. I can explain any scientific diagram I find in a textbook to a teacher 
15. I can interpret what concept a scientific diagram is representing 
16. I can explain simple science concepts with visual diagrams   
17. I can solve problems using scientific diagrams 
18. I can compare scientific diagrams and identify what is different about them 
19. I can create multiple scientific diagrams to show my understanding of a concept 
20. I can understand when someone explains a scientific idea to me using a diagram 


