Mentoring a Student in Completing a Directed Study -"Using Stem Cells for Heart Valve Engineering." Amitoj S. Sawhney, Nalini V. Broadbelt and Michelle A. Young

BACKGROUND

- There are more than 100,000 heart valve surgeries in the USA per year
- Goal: to advance the current approach to heart valve replacement by using autologous stem cells
- Target population: individuals with congenital heart valve disease (CHVD) or heart valve malformations

EXPERIMENT

In-vitro development

- Isolation of cardiac stem cells and porcine valve interstitial cells (pVICs)
- Creation of 3D-scaffold of heart valve using polycaprolactone (PCL) and poly L-lactic acid (PLLA) blend
- Seeding of stem cell and pVICs onto 3D scaffold lacksquare
- Complete cellular colonization, 15 days growth

TECHNIQUES

- Cell isolation and cell culture
- 3D stent created using 3D printer
- Create 3D scaffold via electrospinnin
- Cell seeding using static and rotary d seeding

REFERENCES

- Created with BioRender.com
- *Biomechanics*, 47(9), 1949–1963. https://doi.org/10.1016/j.jbiomech.2013.09.023
- 018-26452-y
- made-from-tissue-rather-than-metal-may-be-better-for-middle-aged-patients

Testing the heart valve

- Cell Proliferation/ Colonization
- Mechanical & Structural
- Elasticity and Resistance to stress/strain
- Physiological performance

•	mmunofluorescence sta
• [MTT Assay
•	Fensile mechanical stress
• F	Pulse Duplicator System
• [Doppler Echocardiogram

Hasan, A., Ragaert, K., Swieszkowski, W., Selimović, Š., Paul, A., Camci-Unal, G., Mofrad, M. R. K., & Khademhosseini, A. (2014). Biomechanical properties of native and tissue engineered heart valve constructs. Journal of Hasan, A., Soliman, S., El Hajj, F., Tseng, Y.-T., Yalcin, H. C., & Marei, H. E. (2018). Fabrication of a Tissue Engineered PCL-PLLA Heart Valve. Scientific Reports, 8(1), 8187. https://doi.org/10.1038/s41598-

Heart Valve Repair or Replacement. (n.d.). Texas Heart Institute. Retrieved October 1, 2020, from https://www.texasheart.org/heart-health/heart-information-center/topics/valve-repair-or-replacement/ Heart Valves Made from Tissue Rather than Metal May Be Better for Middle-Aged Patients. (2016, January 15). The Patient Guide to Heart, Lung, and Esophageal Surgery. <a href="https://ctsurgerypatients.com/locality-scalage-complex-scalage-complexed-valves-complexed-complexe

CONCLUSION

Advantages:

- Eliminate the need for mechanical or animal xenograft heart valve transplants
- Reduce the risk of rejection
- Increase durability
- Reduce multiple transplants as seen with mechanical valves

Disadvantages:

Risk of rejection

In-vivo testing

Surgical implantation into heart Check for thrombosis, bleeding, calcification, and regurgitation Compare blood flow and valve

Testing longevity in sheep model

Surgery to implant heart valve in mouse and