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Abstract

Most biology texts villify Lamarck’s concept of “inheritance of acquired characters” and 
leave the impression that all acquired characters are never transmitted to offspring. 
However, recent research indicates that this is not true! Some “acquired” traits are inher-
ited. I profile some of these striking cases and their importance for evolution and for 
understanding a broader epigenetic context for heredity and ontogeny (the emerging 
field of “evo-devo”). Further, I discuss how such cases, even considered as exceptions, 
contribute to understanding the nature of science, both the role of general rules in biology 
and the occurrence of conceptual change, or paradigm shifts.

Key Words:  Epigenetics; epigenome; evo-devo; genetic assimilation; Lamarckism, 
paradigm shift; Weissmanism.

In the February 2007 issue of The American Biology Teacher, Stern and 
Ben-Akiva “outline a lesson plan that is designed to challenge one 
commonly held naive idea, namely the inheritance of acquired traits.” 
The present article suggests (and provides at least partial answers to) 
the following questions for teachers to consider if they wish to pre-
pare lessons containing information that goes 
beyond the content of Stern and Ben-Akiva’s 
curriculum.

The lesson plan of Stern and Ben-Akiva may •	
leave the reader with the impression that all 
acquired characters are never transmitted to 
offspring. Are there any examples of heri-
table acquired characters? If such examples 
exist, by what mechanisms can acquired 
traits become heritable?

If the effectiveness of natural selection •	
depends on the quantity of heritable pheno-
typic variation in a population, what mecha-
nisms are known to generate this variation?

If the inheritance of acquired characters is •	
considered by most biologists to be a rela-
tively rare exception to the general rule 
that acquired characters are not heritable, what can be learned by 
devoting class time to such “exceptions”?

What is the meaning of “evo-devo” and why is it important for •	
understanding modern evolutionary theory?

National standards for biology curricula recommend that students •	
should learn how science works to generate new knowledge. The 
history of science reveals that the life of many theories is ephemeral. 
Old theories are replaced or modified by the discovery of new facts of 
nature or new ways of interpreting existing facts (National Research 
Council, 1996: p. 201). This heuristic process is sometimes referred to 
as a “paradigm shift.” Can the study of acquired traits be used to help 
students prepare their minds for paradigm shifts and improve their 
understanding and appreciation of science as a way of knowing? 

EpigeneticsJ  J

An acquired trait develops during the life of an organism as a conse-
quence of a genotype that allows certain unusual environmental factors 
to modify developmental processes, thus producing a different phenotype 
than would develop in the normal range of environments (the “norm of 
reaction”). Epigenetics is a branch of genetics that studies how pheno-
typic variants arise without changing the nucleotide sequence in DNA. 

Differential gene action is responsible for cellular 
differentiation; that is, different groups of genes are 
“turned on” or “activated” (transcribed into RNA; 
messenger RNA is translated into proteins) while 
other groups of genes are “turned off” (inactivated 
or silenced) in different cell types. Finding the 
signals that regulate when and where gene prod-
ucts are made and in what quantity is the key to 
understanding genetics, epigenetics, cellular dif-
ferentiation, ontogeny, and their interrelationships 
in modern evolution theory (evo-devo). 

We now know that many segments of non-
coding DNA (not coding for proteins) contain 
“RNA-only” genes that can be transcribed into 
noncoding RNA (ncRNA) molecules but are not 
translated into proteins. Some of these noncoding 
RNA molecules (called “short interfering RNA” or 
siRNA) can suppress translation or promote deg-

radation of specific mRNA molecules (Geddes, 2007; Taubes, 2009). 
As a rule, the addition of methyl groups (CH

3
) to DNA nucleotides 

(by enzymes known as DNA methyltransferases, especially in or near 
promoter regions of genes where transcription begins), tends to interfere 
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with gene transcription, whereas addition of acetyl groups (COCH
3
) 

to histone proteins in chromatin tends to enhance gene transcription. 
These methyl and acetyl groups are known as “epigenetic tags or marks.” 
These tags do not change (mutate) the nucleotide sequences in DNA. 
The pattern of epigenetic markings on chromosomes (the epigenome) 
may vary from one cell type to another and from one time to another 
during the life of an individual cell. Adding methyl groups to one gene 
may be beneficial or adaptive (e.g., silencing of a cancer-promoting 
proto-oncogene), but may be harmful to another gene (e.g., inactivating 
a tumor-suppressor gene). Histone proteins are found in association 
with multiple DNA regions throughout the chromosomes, whereas other 
nonhistone proteins (called “transcription factors”) are characterized by 
DNA-binding segments that enable them to attach to target nucleotide 
sequences and regulate the transcription of specific genes.

Inheritance of Acquired CharactersJ  J

Although it is not well understood, during the first few days after concep-
tion, most of the epigenetic tags on chromosomes of human parents are 
removed from the chromosomes of the embryo. By mid-gestation, new 
epigenetic patterns are usually established. Although most of these epige-
netic patterns are not heritable (i.e., not transmitted by sexual reproduc-
tion to offspring), a few of them are. Occasionally, the methylation pattern 
of a parental chromosome can persist through meiosis and is found in the 
chromosomes of the next generation, sometimes for several generations. 
The following are some examples. Water fleas (genus Daphnia) grow 
defensive spines when exposed to predators. The effect can last for several 
generations. An epigenetic change in nematode worms has been inherited 
for 80 generations (Watters, 2006). When pregnant rats are exposed to the 
fungicide vinclozolin and the pesticide methoxychlor, their male offspring 
produce abnormal sperm (slow swimming, early death). These acquired 
characters reappear in most of their sons, grandsons, and greatgrandsons 
(Ruvinsky, 2006). If pregnant guinea pigs are exposed to the glucocorti-
coid drug betamethasone (used to hasten lung development of premature 
human babies), their offspring have physiological and behavioral abnor-
malities. These abnormalities also appeared in the grandprogeny of the 
females that were exposed to the drug (Motluk, 2005).

Epigenetic marks on DNA or chromatin can sometimes be changed 
in response to various environmental factors or patterns of behavior, and 
some of these marks can be transmitted from parents to their offspring, 
resulting in the “inheritance of acquired characters.” For example, the food 
that animals eat may sometimes influence the phenotypes of their offspring. 
Yellow-haired mice tend to be fat and susceptible to life-shortening dis-
ease. When fed a diet rich in methyl donors (such as folic acid, vitamin 
B

12
, onions, garlic, or beets), female yellow mice produced slender, brown-

agouti progeny that lived a normal span of life. It is thought that the methyl 
groups in the mother’s food found their way into the embryo’s chromosome, 
became attached to the yellow gene, and silenced it (Watters, 2006). 

Even some maternal behaviors can induce epigenetic changes 
in progeny. Newborn rat pups that are licked and groomed by their 
mothers mature to be relatively calm and brave. Newborns that receive 
little or no maternal licking grow up to be nervous and seek darkness. 
The hippocampus of the brain of a well-licked rat is better developed 
and releases less of the stress hormone cortisol than the hippocampi of 
rats that were deprived of neonatal licking. The methylation patterns in 
hippocampus cells are different in licked and nonlicked rats. These epi-
genetic signals can be reversed in the brains of adult rats by injection of 
the drug trichostatin A (Watters, 2006).

For most protein-coding genes, both maternal and paternal alleles of 
a gene are normally activated or inactivated at the same time. Sometimes, 
however, the allele of one parent is active (or inactive) while the allele of the 
other parent is inactive (or active). This epigenetic phenomenon is termed 
parental imprinting (Jirtle & Weidman, 2007). For example, the R gene in 
maize controls the color of pigment grains in the aleurone (outer layer of 

endosperm) of the kernel. If the seed parent is RR and the pollen parent is rr, 
the hybrid seeds are solid red. But hybrids of the reciprocal cross are mottled 
because the maternal copy is only partly expressed, owing to an epigenetic 
effect. People who receive the dominant gene for Huntington’s disease show 
symptoms during adolescence if it is inherited from the father, but develop 
symptoms during middle age when the gene comes from the mother.

Human fathers who started smoking tobacco before age 11 produce 
sons who are heavier than sons of fathers who began smoking later in life or 
who never smoked; daughters are unaffected (Pennisi, 2005). Grandsons 
of men who consumed a surplus of food during childhood have a higher 
risk of developing diabetes than those whose grandfathers were reared in 
times of food scarcity. The health of granddaughters is correlated only with 
that of their paternal grandmothers (Pennisi, 2005). One of the best plant 
examples of a fairly stable methylation pattern transmitted over many gen-
erations is found in the peloric (Greek for “monster”) flower form of the 
toadflax Linaria vulgaris. Carl von Linnaeus (1707–1778) thought that it 
was a new species. Today, it can still be found in the same region where 
Linnaeus found it (Jablonka & Lamb, 2005). Jablonka and Raz (2009) list 
about a hundred examples of transgenerational epigenetic inheritance.

Landman (1991) presented several examples that are defined opera-
tionally by him as “inheritance of acquired characters” (IAC) systems 
because they conform to the following experimental pattern: 

Individual organisms or cultures of cells 
incubating in a particular environment are 
exposed briefly to a chemical or physical 
treatment under conditions that allow little 
or no growth (thereby ruling out selection 
of mutants). Following the exposure, and upon 
being returned to the original environment, all 
or a large proportion of the treated cells (or 
organisms) exhibit new characteristics that are 
passed on heritably to succeeding generations.

Landman claimed that at least three mechanisms are known to give rise to 
IAC. In organisms with nucleated cells, IAC would not involve changing 
chromosomal genes (mutations) but might involve (1) heritable stabili-
zation of gene expression without any attendant change in nucleic acid 
sequence (extranucleic inheritance; examples include the inheritance of a 
wall-less state in Bacillus subtilis, maintenance of the induced state in the lac 
operon of Escherichia coli, and cortical inheritance in ciliates); (2) alterations 
in DNA substituents, such as addition or removal of methyl or glucosyl 
groups (epinucleic inheritance); and (3) nucleic inheritance by horizontal 
or lateral gene transfer that occurs when foreign nucleic acid-containing 
elements such as plasmids (small circles of nonessential DNA in bacteria) or 
viruses are added to an organism’s genome or to its cytoplasm.

Genetic AssimilationJ  J

There are at least two mechanisms by which acquired characters can be 
made heritable. As previously discussed, epigenetic methyl tags on some 
regions of DNA can be passed from one generation to another. Genetic assim-
ilation, on the other hand, is the process by which a phenotypic character 
initially produced only in response to an unusual environmental influence 
(an acquired trait) becomes, through a process of selection, taken over by 
the genotype, so that it is formed even in the absence of the environmental 
influence that at first had been necessary (King, 1968). Studies of fruit flies 
in a wild population have shown that most of their traits have relatively little 
phenotypic variation, even though the population contains a remarkable 
amount of unexpressed genetic variation. Development of these wild-type 
characters is said to be well “canalized” or “buffered” against minor pertur-
bations caused by genetic or environmental differences. Abnormal (mutant) 
flies called “crossveinless” have all or a portion of the tiny crossveins in 
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their wings missing. Exposing normal (wild-type) flies to an unnaturally 
high temperature for a few hours during their pupa stage caused ~40% of 
them to develop a crossveinless phenocopy. If only heat-shocked crossvein-
less flies were allowed to breed, the frequency of the crossveinless trait was 
shown to increase to over 90% in fewer than 20 generations. However, as 
early as generation 14, some of the flies developed the crossveinless trait 
even in the absence of heat-shock. Breeding only from these unshocked 
crossveinless flies in a normal environment produced strains in which the 
crossveinless trait was almost 100% (Waddington, 1953). Thus, the cross-
veinless trait, which was originally an acquired character, had undergone 
almost complete “genetic assimilation” by selection to become an inherited 
character that developed in normal environments (without heat shocks). 
This experiment shows that exposing an organism to an unusual environ-
mental factor can reveal the cryptic genetic variation of a trait on which 
selection can act to produce recombinants that develop an acquired trait 
even without the environmental stimulus that was initially required for its 
production. Genetic accommodation

differs from genetic assimilation in that the 
latter results in canalization of the new phe-
notype so that it is no longer affected by 
environmental variation, whereas genetic 
accommodation can result in an increased 
environmental sensitivity of a plastic pheno-
type. (Suzuki & Nijhout, 2006) 

Palmer (2004) cited five examples of genetic assimilation and concluded 
that the process may be much more widespread than is currently believed.

The evolutionary potential of a population depends on the amount of 
heritable biological variation from which natural selection can propagate 
new adaptive gene combinations. The meiotic processes of genetic cross-
ing-over between linked genes and independent assortment of homolo-
gous chromosomes into gametes are the main engines that create most 
new genetic combinations in a population. New gene mutations (altered 
DNA nucleotide sequences) are the ultimate source of most heritable bio-
logical variations. Not all acquired characters are necessarily adaptive, 
but like random (nondirectional, nonteleological) genetic mutants, only 
heritable adaptive traits are likely to persist over many generations in a 
population of organisms through natural selection. The effects of epige-
netic modifications to DNA or chromatin, though not often transmissible 
from one generation to another, are occasionally inherited over several 
generations and may be an underappreciated source of biological varia-
tion. Pigliucci (2006) is among the visionaries who believe that

Inherited epigenetic variants can interact 
with their genetic counterparts to multiply by 
orders of magnitude the phenotypic variation 
available to natural selection, thereby expand-
ing the mechanistic basis of evolutionary theo-
retical explanations and greatly increasing their 
plausibility as an account of life’s diversity.

Understanding the Nature of ScienceJ  J

French naturalist Jean Baptiste Lamarck (1744–1829) revolutionized the 
study of lower invertebrates, but he is best known today for popularizing 
the ancient theory (Plato discussed it) of the inheritance of acquired charac-
ters in his 1809 book Zoological Philosophy. British naturalist Charles Darwin 
(1809–1882) did not know the biological basis of heritable phenotypic 
diversity in natural populations or how new hereditary characters arose, 
and so he relied on IAC to fill that gap in the first edition (1859) of his book 

On the Origin of Species. Without an understanding of genetics, his theory 
of evolution was incomplete. That is one reason why we no longer equate 
Darwinism with modern evolutionary theory. Creationists (now calling 
themselves “intelligent design advocates”) continue to refer derogatorily to 
modern evolutionary theory as “Darwinism.” In 1865, the Moravian monk 
Gregor Mendel (1822–1884) reported his breeding experiments with peas. 
He rejected the prevailing theory (paradigm) that the hereditary substance 
behaved as a fluid and blended in hybrids. In its place, he proposed that 
traits were produced by nonblending particles of heredity (later to be called 
“genes” by others). His work, however, did not explain the inheritance of 
quantitative characters that commonly are partly influenced by environ-
mental factors. Even at an elementary educational level, it might be men-
tioned that all monogenic traits are not Mendelian. For example, sex-linked 
traits are inherited in a non-Mendelian fashion, as are traits governed by 
genes in mitochondria and chloroplasts. Parental imprinting is yet another 
non-Mendelian phenomenon. Unfortunately, teaching only Mendelism 
might lead some astray into “genetic determinism” (“genes are everything”), 
with its undesirable political and social implications (Allchin, 2005). By 
cutting off the tails of mice for several generations and breeding only from 
them, the German biologist August Weissman (1833–1914) reported in 
his 1891 book that the tail lengths of all the descendants grew to normal 
length. Many people assumed from these experiments that if characteristics 
acquired during the lifetime of individuals by such extreme measures had 
no heritable consequences, then the more subtle effects of natural environ-
mental factors would also be ineffective in changing their hereditary factors. 
Lamarckism thus fell into general disrespect as far as plants and animals are 
concerned. Weissmanism, until recently, became a “sacred cow,” immune 
to challenge or change.

However, just because the ideas of these pioneering scientists were 
wrong or incomplete in certain respects does not justify villainizing them 
or bashing their ideas as worthless. Teachers should emphasize that put-
ting forth an original idea, even a flawed one, may heuristically serve 
to stimulate scientific investigation to verify, falsify, modify, extend, or 
replace it. This is how scientific knowledge advances and accumulates.

High school students may have difficulties 
understanding the views of historical figures. 
For example, students may think of histori-
cal figures as inferior because they did not 
understand what we do today. This “Whig-
gish perspective” seems to hold for some 
students with regard to scientists whose 
theories have been displaced. (National 
Research Council, 1996: p. 200)

At a more advanced level of education, students should be informed 
of the “tentativeness” of scientific hypotheses or theories. A prevailing 
concept today (paradigm) may be discarded tomorrow by the discovery 
of new facts of nature. The general public tends to view a scientific para-
digm as a sacred cow. The current debate over when women should 
receive mammograms has left many women dismayed and emotionally 
conflicted. They thought that science had proved the value of early mam-
mograms in detecting breast cancer, and now they are being told that it 
may not be the best procedure. The public’s view of scientific authority is 
shattered by these kinds of challenges to an accepted paradigm. The dis-
covery of the enzyme RNA-dependent DNA polymerase proved to be an 
exception to the “central dogma” of molecular biology (DNA  RNA  
protein) that some may consider a minor deviation from the general rule. 
However, this enzyme became a hallmark of a taxonomic class of viruses 
known as retroviruses. Human immunodeficiency virus (HIV) is a retro-
virus that causes acquired immunodeficiency syndrome (AIDS), which 
is now epidemic throughout the world. Similarly, the recent discoveries 
of the “epigenome,” regulatory RNA molecules, and epigenetic tags 
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added to target DNA sequences by methyltransferase enzymes cannot be 
considered trivial because turning genes on or off during embryological 
and postnatal development is at the heart of how organisms develop 
their anatomical, physiological, biochemical, and behavioral traits. 

On-Line Teaching SupplementsJ  J

A Survey to Evaluate Students’ Understanding of Reproduction, Heredity, 
Ontogeny, and Phenotypic Diversity; Lists A and B (http://www.jstor.org/
stable/10.1525/abt.2011.73.2.6)

NOVA program “Ghost in Your Genes” (http://www.jstor.org/
stable/10.1525/abt.2011.73.2.6)
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